题目在我这里
方法一,大暴力
public String longestPalindrome1(String s) {
/*
very force: O(s.length()^2)
空间复杂度 O(1)
*/
int i=0;
int j=0;
boolean flag = false;
int maxi = i;
int maxj = j;
for(i=0;i<s.length();i++){
for(j=s.length()-1;j>i;j--){
if(s.charAt(i)==s.charAt(j)){
int ii = i;
int jj = j;
for(jj=j;jj>ii;jj--,ii++){
if(s.charAt(ii)!=s.charAt(jj)){
// flag = true;
break;
}
}
System.out.println(ii+" - "+jj);
if(ii>=jj){
flag = true;
break;
}
}
}
if(flag){
if(j-i > maxj-maxi){
maxj = j;
maxi = i;
}
}
}
if(s.length()==0){
return "";
}
if(maxi>=maxj){
return s.substring(0,1);
}
return s.substring(maxi,maxj+1);
}
方法二,dp ( 69ms )
public String longestPalindrome2(String s) {
/*
DP
空间复杂度 O(N^2)
时间复杂度 O(N^2)
f(i,j) = { true (f(i+1,j-1)==true && s[i]==s[j])
{ false otherwise
f(i,i) = true
f(i,i+1) = s[i] == s[i+1]
*/
int N = s.length();
boolean dp[][] = new boolean[N][N];
int max = 0;
int a=0,b=0;
if(N==0){
return "";
}
for(int j=0;j<N;j++){
for(int i=0;i<=j;i++){
// System.out.println(i+" "+j+" "+s.charAt(i) +" "+ s.charAt(j));
dp[i][j] = s.charAt(i) == s.charAt(j);
if(i+1<N && j-1>=0 && j-i>=2){
dp[i][j] = dp[i][j] && dp[i+1][j-1];
}
// System.out.println(j-i+1);
if(dp[i][j] && j-i+1 > max){
max = j-i+1;
a = i;
b = j;
}
}
}
for(boolean i[]: dp){
System.out.println(Arrays.toString(i));
}
System.out.println(max+" "+a+" "+b);
return s.substring(a,b+1);
}
方法三,中心扩展法 (递归版) 6ms
public String longestPalindrome3(String s) {
/*中心扩展法
空间复杂度 O(1)
时间复杂度 O(N^2)
*/
if (s == null || s.length() < 1) return "";
int a = 0;
int b = 0;
for(int i=0;i+1<s.length();i++){
int len = Math.max(check(s,i,i), check(s,i,i+1));
if(len > b-a+1){
a = i - (len-1)/2;
b = i + len/2;
System.out.println(len+" "+a+ " "+b);
}
}
return s.substring(a,b+1);
}
public int check(String s,int a,int b){
while(a>=0 && b<s.length() && s.charAt(a)==s.charAt(b)){
a--;
b++;
}
// return new int[]{a,b};
System.out.println(a+ " "+b);
return b-a-1;
}
方法四、Manacher ( 4ms )
public String longestPalindrome4(String s) {
/*
Manacher
O(n)
a b c b
0 1 2 3
# a # b # c # b #
0 1 2 3 4 5 6 7 8
i < maxRight: m[i] = min(m[pos+(i-pos)], maxRight - i)
*/
if (s == null || s.length() < 1) {
return "";
}
char ss[] = new char[s.length()*2+1];
ss[0] = '#';
for(int i=0;i<s.length();i++){
ss[i*2+1] = s.charAt(i);
ss[i*2+2] = '#';
}
int man[] = new int[ss.length];
int pos = 0;
int maxRight = 0;
int maxPos = 0;
int maxLen = 0;
for(int i=0;i<man.length;i++){
if(i<maxRight){
man[i] = Math.min(man[pos+pos-i],maxRight-i);
}else{
man[i] = 0;
}
while(i-man[i] >= 0 && i+man[i]<ss.length && ss[i+man[i]] == ss[i-man[i]]){
man[i]++;
}
if(maxRight < i+man[i]){
maxRight = i+man[i];
pos = i;
}
if(man[i] > maxLen){
maxLen = man[i];
maxPos = i;
}
}
System.out.println(maxLen+" "+maxPos);
if(maxPos%2==1){
return s.substring((maxPos-1)/2-(maxLen-1)/2,(maxPos-1)/2+(maxLen-1)/2+1);
}else{
return s.substring((maxPos-1)/2-(maxLen-1)/2+1,(maxPos-1)/2+(maxLen-1)/2+1);
}
}