简单做法, 左边哪一些, 右边拿一下, 看谁小拿谁.
但是时间复杂度达不到要求, 虽然在leetcode上也是很快
public double findMedianSortedArrays1(int[] A,int[] B){
/*
time complexity: O((m+n)/2+1)
*/
int m = A.length;
int n = B.length;
int index1 = 0;
int index2 = 0;
int num1=0;
int num2=0;
for(int i=0;i<(m+n)/2+1;i++){
num2 = num1;
if(index1 == m){
num1 = B[index2];
index2 ++;
}else if(index2 == n){
num1 = A[index1];
index1++;
}else if(A[index1] < B[index2]){
num1 = A[index1];
index1++;
}else{
num1 = B[index2];
index2++;
}
}
System.out.println(num1+" "+num2+" "+index1+" "+index2);
if((n+m)%2==1){
return num1;
}else{
return (num1+num2)/2.0;
}
}
官方正解
public double findMedianSortedArrays(int[] A, int[] B) {
/*
time complexity O(log(m+n))
0 -- i-1 | i -- m-1
0 -- j-1 | j -- n-1
1. A[i-1] <= B[j]
2. B[j-1] <= A[i]
len(0,i-1)+len(0,j-1) = len(i,m-1)+len(j,n-1)
i-1-0+1 + j-1-0+1 = m-1-i+1 + n-1-j+1
2*i+2*j = n+m or n+m+1 (if n+m is odd)
3. j = (n+m+1)/2 - i (this '+1' don't refuse result)
4. max(A[i-1],B[j-1]) <= min(A[i],B[j])
*/
if(A.length>B.length){
int []t = A;
A = B;
B = t;
}
int m = A.length;
int n = B.length;
int i;
int j;
int begin=0;
int end=m;
// i=0;
while(begin<=end){
i = (end + begin)/2;
j = (n+m+1)/2-i;
System.out.println(i+" "+j+" "+m+" "+n);
if(i<end && B[j-1] > A[i]){ // i is small
begin = i+1;
// i++;
}else if(i>begin && A[i-1] > B[j]){ // i is big
end = i-1;
// i--;
}else{
System.out.println(i+" "+j);
int maxLeft;
if(i==0){
maxLeft = B[j-1];
}else if(j==0){
maxLeft = A[i-1];
}else{
maxLeft = Math.max(A[i-1],B[j-1]);
}
if((m+n)%2==1){
return maxLeft;
}
int minRight;
if(i==m){
minRight = B[j];
}else if(j==n){
minRight = A[i];
}else{
minRight = Math.min(A[i],B[j]);
}
return (maxLeft + minRight)/2.0;
}
}
return 0;
}